AnalisaTingkat Kepuasan Mahasiswa Terhadap Layanan Pembelajaran Menggunakan K-Means dan Algoritma Genetika

Ade Rizki Rinaldi, Lana Surlanto, Dadang Sudrajat, Dian Ade Kurnia

Abstract

The level of student satisfaction with learning services in higher education is one factor in the quality of college learning. To determine the level of student satisfaction with learning services in higher education, it is necessary to analyze the level of student satisfaction with learning services. K-Means method is a technique of grouping data based on the level of similarity of each member. K-Means can be used to classify the student satisfaction index on learning services. The K-Means method can also be optimized with genetic algorithms to determine the best centroid value. K-means optimization with Genetic Algorithms can be used as a technique to determine the level of student satisfaction with learning services. Obtained by Davies Bouldien Index from the K-Means and Genetics method is 1.593 with cluster number 5

Keywords

Student Satisfaction, K-Means, Genetic Algorithms, Davies Bouldien Index

Full Text:

PDF

References

J. Niara, T. Saputra, W. Sufi, B. C. Utami, and U. L. Kuning, “Pengaruh persepsi mahasiswa terhadap kualitas pelayanan pegawai dibagian administrasi fakultas ilmu administrasi universitas lancang kuning,” vol. 11, no. 1, pp. 6–16, 2018.

E. Sukmanasa, L. Novita, and F. S. Sundari, “ANALISIS KEPUASAN MAHASISWA TERHADAP KINERJA DOSEN PROGRAM STUDI PENDIDIKAN GURU SEKOLAH DASAR UNIVERSITAS PAKUAN,” P E D A G O N A L, vol. 1, no. 2, pp. 91–99, 2017.

R. A. Malik, S. Defit, and Yuhandri, “Perbandingan Algoritma K-Means Clustering Dengan Fuzzy C-Means Dalam Mengukur Tingkat Kepuasan Terhadap Televisi Dakwah Surau Tv,” RABIT (Jurnal Teknol. dan Sist. Inf. Univrab), vol. 3, no. 1, pp. 10–21, 2018.

E. B. Susanto, “Evaluasi Hasil Klaster Pada Dataset Iris , Soybean-small , Wine Menggunakan Algoritma Fuzzy C-Means dan K-,” vol. 2, no. 1, pp. 6–13, 2016.

I. Wahyuni, Y. A. Auliya, A. Rahmi, and W. F. Mahmudy, “Clustering Nasabah Bank Berdasarkan Tingkat Likuiditas Menggunakan Hybrid Particle Swarm Optimization dengan K-Means,” J. Ilm. Teknol. dan Inf. ASIA, vol. 10, no. 2, pp. 24–33, 2016.

F. Y. Bisilisin, Y. Herdiyeni, and B. I. B. P. Silalahi, “Optimasi K-Means Clustering Menggunakan Particle Swarm Optimization pada Sistem Identifikasi Tumbuhan Obat Berbasis Citra K-Means Clustering Optimization Using Particle Swarm Optimization on Image Based Medicinal Plant Identification System,” J. Ilmu Komput. Agri-Informatika, vol. 3, no. 2002, pp. 38–47, 2014.

M. Nishom and M. Y. Fathoni, “Implementasi Pendekatan Rule-Of-Thumb untuk Optimasi Algoritma K-Means Clustering,” vol. 03, no. 02, pp. 237–241, 2018.

P. S. Hasugian, “Penerapan Data Mining Untuk Klasifikasi Produk Menggunakan Algortima K-Means,” J. Mantik Penusa, vol. 2, no. 2, pp. 191–198, 2018.

A. Josi, “Implementasi Algoritma Genetika Pada Aplikasi Penjadwalan Perkuliahan Berbasis Web Dengan Mengadopsi Model Waterfall,” J. Inform. Pengemb. IT, vol. 02, no. 02, pp. 77–83, 2017.

H. Sopian, Purwanto, and M. A. Soeleman, “Pemilihan Pusat Klaster Awal Pada Metode K-Means Berbasis Median,” J. INTAKE, vol. 7, pp. 93–104, 2016.

M. P. Prof. Dr. A. Muri Yusuf, Metode Penelitian Kuantitatif, Kualitatif & Penelitian Gabungan. Indonesia: Prenada Media, 2017.

Refbacks

  • There are currently no refbacks.