Optimasi Parameter Artificial Neural Network Menggunakan Algoritma Genetika Untuk Prediksi Kelulusan Mahasiswa

Irfan Ali, Lana Sularto

Abstract

It is difficult to predict student graduation status in a college. Higher education needs to predict student behavior from active students so that it can be seen the failure factor of students who do not graduate on time. Data mining classification techniques used to predict students are using artificial neural networks. Artificial neural network is one method to predict student graduation. This researcher tries to apply artificial neural network methods using genetic algorithms to predict student graduation. In this study using the learning rate parameter 0.1 with optimization using genetic algorithms then evaluating to get accuracy. The results of this study get an accuracy value for artificial neural network models of 71.48% and accuracy for artificial neural network models based on genetic algorithms by 99.33% with an accuracy difference of 27.85%.

Keywords

Data Mining; Artificial Neural Network, Genetic Algorithm

Full Text:

PDF

References

S. Salmu and A. Solichin, “Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu Menggunakan Naïve Bayes : Studi Kasus UIN Syarif Hidayatullah Jakarta,” Pros. Semin. Nas. Multidisiplin Ilmu Univ. Budi Luhur, no. April, pp. 701–709, 2017.

E. P. Rohmawan, “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Decision Tree Dan Artificial Neural Network,” J. Ilm. MATRIK, vol. 20, no. 1, pp. 21–30, 2018.

M. Asep Saefulloh, “Penerapan Metode Klasifikasi Data Mining untuk Prediksi Kelulusan Tepat Waktu,” InfoSys J., vol. 2, pp. 41–54, 2013.

R. H. Kusumodestoni and A. K. Zyen, “Prediksi kecepatan angin dengan model neural network,” Prediksi, vol. 6, no. 1, p. 7, 2015.

R. Ansari, “PREDIKSI KELULUSAN MAHASISWA DENGAN JARINGAN SYARAF TIRUAN Rudy,” JTIULM, pp. 1–6, 2013.

M. Inthachot, V. Boonjing, and S. Intakosum, “Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend,” Comput. Intell. Neurosci., vol. 2016, 2016.

A. Y. Prathama, “Pendekatan Ann (Artificial Neural Network) Untuk Penentuan Prosentase Bobot Pekerjaan Dan Estimasi Nilai Pekerjaan Struktur Pada Rumah Sakit Pratama,” J. Teknosains, vol. 7, no. 1, p. 14, 2018.

P. Vishwakarma, Y. Kumar, and R. K. Nath, “Data Mining Using Genetic Algorithm ( DMUGA ),” vol. 5, no. 2, pp. 88–94, 2012.

Muliadi, “PEMODELAN ALGORITMA GENETIKA PADA SISTEM PENJADWALAN PERKULIAHAN PRODI ILMU KOMPUTER UNIVERSITAS LAMBUNGMANGKURAT,” Kumpul. J. Ilmu Komput., vol. 01, no. 01, pp. 67–78, 2014.

M. Z. Abd Elrehim, M. A. Eid, and M. G. Sayed, “Structural optimization of concrete arch bridges using Genetic Algorithms,” Ain Shams Eng. J., no. xxxx, pp. 1–10, 2019.

J. Massalesse, “Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner,” vol. 7, no. 2, pp. 108–117, 2011.

A. Kusnadi and J. Pratama, “Implementasi Algoritma Genetika dan Neural Network Pada Aplikasi Peramalan Produksi Mie,” J. Ultim., vol. 9, no. 1, pp. 37–41, 2017.

R. Mahajan and G. Kaur, “Neural Networks using Genetic Algorithms,” Int. J. Comput. Appl., vol. 77, no. 14, pp. 6–11, 2013.

Refbacks

  • There are currently no refbacks.