Interpretasi dan Visualisasi Hasil Clustering Menggunakan K-Medoid untuk Identifikasi Penyebaran Virus Covid-19
Abstract
Keywords
Full Text:
PDFReferences
S. K. Muruganandham, D. Sobya, S. Nallusamy, D. K. Mandal, and P. S. Chakraborty, “Study on Leaf Segmentation Using K-Means and K-Medoid Clustering Algorithm for Identification of Disease,” Indian Journal of Public Health Research & Development, vol. 9, no. 5, p. 289, 2018, doi: 10.5958/0976-5506.2018.00456.4.
M. Umamaheswari and P. I. Devi, “Prediction of myocardial infarction using K-medoid clustering algorithm,” in 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Mar. 2017, pp. 1–6. doi: 10.1109/ITCOSP.2017.8303128.
X. Zhang, J. Zhu, Q. Wang, and H. Zhao, “Identifying influential nodes in complex networks with community structure,” Knowledge-Based Systems, vol. 42, pp. 74–84, Apr. 2013, doi: 10.1016/j.knosys.2013.01.017.
M. Lenart, N. Mascarenhas, R. Xiong, and A. Flower, “Identifying risk of progression for patients with Chronic Kidney Disease using clustering models,” in 2016 IEEE Systems and Information Engineering Design Symposium (SIEDS), Apr. 2016, pp. 221–226. doi: 10.1109/SIEDS.2016.7489303.
Q. Ping, C. C. Yang, S. A. Marshall, N. E. Avis, and E. H. Ip, “Breast Cancer Symptom Clusters Derived From Social Media and Research Study Data Using Improved $K$ -Medoid Clustering,” IEEE Transactions on Computational Social Systems, vol. 3, no. 2, pp. 63–74, Jun. 2016, doi: 10.1109/TCSS.2016.2615850.
S. Sindi et al., “ANALISIS ALGORITMA K-MEDOIDS CLUSTERING DALAM PENGELOMPOKAN PENYEBARAN COVID-19 DI INDONESIA,” Jurnal Teknologi Informasi, vol. 4, no. 1, 2020.
J. E. C. Saire, “Data Mining Approach to Analyze Covid19 Dataset of Brazilian Patients,” Aug. 2020, [Online]. Available: http://arxiv.org/abs/2008.11344
U. Rizkya Gurning, “Penerapan Algoritma K-Means dan K-Medoid untuk Pengelompokkan Data Pasien Covid-19,” Technology and Science (BITS), vol. 3, no. 1, 2021, doi: 10.47065/bits.v3i1.1003.
K. M. al Kindi et al., “Demographic and socioeconomic determinants of COVID-19 across oman-a geospatial modelling approach,” Geospatial Health, vol. 16, no. 1, pp. 145–160, 2021, doi: 10.4081/gh.2021.985.
A. S. Sinaga, A. S. Sitio, R. Ramadhani, and A. M. Karimah, “Analisa Big Data Penyebaran Covid-19 Berdasarkan Peta Sebaran dan Peraturan Protokol Dengan Business Intelligence (BI),” Jurnal Ilmiah Komputasi, vol. 20, no. 3, Sep. 2021, doi: 10.32409/jikstik.20.3.2775.
J. E. C. Saire, “Data Mining Approach to Analyze Covid19 Dataset of Brazilian Patients,” Aug. 2020, [Online]. Available: http://arxiv.org/abs/2008.11344
A. M. B. de Oliveira, J. M. Binner, A. Mandal, L. Kelly, and G. J. Power, “Using GAM functions and Markov-Switching models in an evaluation framework to assess countries’ performance in controlling the COVID-19 pandemic,” BMC Public Health, vol. 21, no. 1, Dec. 2021, doi: 10.1186/s12889-021-11891-6.
Refbacks
- There are currently no refbacks.