Deteksi Intrusi Pada Basis Data Menggunakan Random Forest
Abstract
Keywords
Full Text:
PDFReferences
A. Kamra and E. Bertino, “Design and implementation of an intrusion response system for relational databases,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 6, pp. 875–888, 2011, doi: 10.1109/TKDE.2010.151.
D. Nandasana and V. Barot, “A framework for database intrusion detection system,” Proc. - Int. Conf. Glob. Trends Signal Process. Inf. Comput. Commun. ICGTSPICC 2016, pp. 74–78, 2017, doi: 10.1109/ICGTSPICC.2016.7955272.
I. Singh, V. Darbari, L. Kejriwal, and A. Agarwal, “Conditional adherence based classification of transactions for database intrusion detection and prevention,” 2016 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2016, pp. 42–49, 2016, doi: 10.1109/ICACCI.2016.7732023.
M. R. Keyvanpour, M. Barani Shirzad, and S. Mehmandoost, “CID: a novel clustering-based database intrusion detection algorithm,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 2, pp. 1601–1612, 2021, doi: 10.1007/s12652-020-02231-4.
S. M. Darwish, S. K. Guirguis, and M. M. Ghozlan, “Intrusion detection in role administrated database: Transaction-based approach,” Proc. - 2013 8th Int. Conf. Comput. Eng. Syst. ICCES 2013, no. July 2014, pp. 73–79, 2013, doi: 10.1109/ICCES.2013.6707175.
R. Ramachandran, R. Nidhin, and P. P. Shogil, “Anomaly Detection in Role Administered Relational Databases - A Novel Method,” 2018 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2018, pp. 1017–1021, 2018, doi: 10.1109/ICACCI.2018.8554752.
S. Jayaprakash and K. Kandasamy, “Database Intrusion Detection System Using Octraplet and Machine Learning,” Proc. Int. Conf. Inven. Commun. Comput. Technol. ICICCT 2018, no. Icicct, pp. 1413–1416, 2018, doi: 10.1109/ICICCT.2018.8473029.
B. H. Izza, Khaerani. Lekso, “Implementasi Dan Analisa Hasil Data Mining Untuk Klasifikasi Serangan Pada Intrusion Detection (Ids) Dengan Algoritma C4.5,” Techno.COM, vol. 14, no. 3, pp. 181–188, 2015.
C. A. Ronao and S. Cho, “A Comparison of Data Mining Techniques for Anomaly Detection in Relational Databases,” Int’l. Conf. Digit. Soc., no. c, pp. 11–16, 2015, [Online]. Available: http://sclab.yonsei.ac.kr/publications/Papers/IC/2015_ICDS.pdf.
M. Doroudian, N. Arastouie, M. Talebi, and A. R. Ghanbarian, “Multilayered database intrusion detection system for detecting malicious behaviors in big data transaction,” 2015 2nd Int. Conf. Inf. Secur. Cyber Forensics, InfoSec 2015, pp. 105–110, 2016, doi: 10.1109/InfoSec.2015.7435514.
S. J. Bu and S. B. Cho, “A hybrid system of deep learning and learning classifier system for database intrusion detection,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10334 LNCS, pp. 615–625, 2017, doi: 10.1007/978-3-319-59650-1_52.
S. Anwar, F. Septian, and R. D. Septiana, “Klasifikasi Anomali Intrusion Detection System (IDS) Menggunakan Algoritma Naïve Bayes Classifier dan Correlation-Based Feature Selection,” J. Teknol. Sist. Inf. dan Apl., vol. 2, no. 4, p. 135, 2019, doi: 10.32493/jtsi.v2i4.3453.
S. M. Siadat, M. Rezvani, and H. Shirgahi, “Proposing a secure method for intrusion detection in Amazon EC2 public cloud,” Researchgate.Net, no. January, 2016, [Online]. Available: https://www.researchgate.net/profile/Hossein_Shirgahi/publication/311312293_International_Journal_of_Educational_Advancement_Proposing_a_secure_method_for_intrusion_detection_in_Amazon_EC2_public_cloud/links/584169a008ae61f75dd0e537/International-Journal-.
D. Wagner, “A comprehensive approach to security,” MIT Sloan Manag. Rev., vol. 48, no. 4, p. 8, 2007, doi: 10.1007/11535706.
Refbacks
- There are currently no refbacks.