Sistem Prediksi Rata-Rata Pemakaian Bahan Bakar Minyak Berbasis Web Menggunakan Algoritma Naive Bayes (Studi Kasus : PT. Hijrah Insan Karima)

Tugianto ., Onki Alexander, Risma Ekawati

Abstract

Companies must be able to take advantage of their assets for the progress of the company without anything that harms or hinders the progress of the company. Then began to develop a system that can help companies monitor their resources, in this case assets owned in the form of vehicles and human resources, the system is a group of elements that are integrated with the same intent to achieve a goal. Then made a web-based prediction system that applies the Naive Bayes Algorithm in predicting the average fuel consumption of PT. The Migration of the Karima People. In the process used methods consisting of observation, interviews, literature study to find the required data, data testing and system development using the Waterfall method. In this way, it will be easier to monitor, analyze and determine strategies that will be implemented in the future based on the existing track record. The average standard value for the criteria for the type of car and fuel has been found to be in a ratio of 1:7 double cars, 1:8 ankle cars, (1:11,1:10,1:9) small cars. With a web-based system and the Naive Bayes Algorithm, it will make it easier to monitor the fuel consumption of each operated fleet

Keywords

Sistem Prediksi, BBM, Aset, Algoritma Naive Baye, Web.

Full Text:

PDF

References

W. Puiji and D. Lasut, “Aplikasi Peramalan Persediaan Bahan Baku Kain Dengan Metode Algoritma Naive Bayes Berbasis Website Pada PT Viore,†Algor, vol. 1, no. 2, pp. 37–43, 2020, [Online]. Available: https://jurnal.ubd.ac.id/index.php/algor/article/view/327.

R. A. Anggraini, G. Widagdo, A. S. Budi, and M. Qomaruddin, “Penerapan Data Mining Classification untuk Data Blogger Menggunakan Metode Naïve Bayes,†J. Sist. dan Teknol. Inf., vol. 7, no. 1, p. 47, 2019, doi: 10.26418/justin.v7i1.30211.

D. Saepulloh, “Pembuatan Sistem Informasi Prediksi Produksi Garam Berbasis Web,†J. Pari, vol. 6, no. 2, p. 141, 2021, doi: 10.15578/jp.v6i2.9737.

I. Rasila, U. Ristian, J. Rekayasa Sistem Komputer, and F. H. MIPA Universitas Tanjungpura Jl Hadari Nawawi, “Implementasi Metode Naive Bayes Classifier Pada Sistem Pengklasifikasi Berita Otomatis Berbasis Website (Studi Kasus: Berita Lokal Dari Mediamassa Online Kalimantan Barat),†Coding J. Komput. dan Apl., vol. 07, no. 2, pp. 49–60, 2019.

F. P. A. Selfiyan, D. W. Wibowo, A. M. H. Putri, H. B. Setyawan, and O. C. Salsabila, “Sistem Pendukung Keputusan Penyeleksian Mahasiswa Berprestasi Menggunakan Metode Naive Bayes Berbasis Web,†J. Sist. dan Inform., vol. 14, no. 1, pp. 41–47, 2019, doi: 10.30864/jsi.v14i1.243.

N. Yahya et al., “UNTUK PREDIKSI KEGIATAN PENERIMAANMAHASISWA BARU ( STUDI KASUS : UNIVERSITAS STIKUBANK SEMARANG ),†no. 2014, pp. 978–979, 2019.

Y. D. Saptohadi, T. H. Pudjiantoro, and A. I. Hadiana, “Sistem Informasi Monitoring Produksi Obat Pada Lembaga Farmasi,†vol. 20, no. 2, pp. 6–11, 2020.

T. Z. Maulani and Z. K. Simbolon, “Implementasi Algoritma Naïve Bayes Classifier Dalam Menentukan Topik Tugas Akhir Mahasiswa Berbasis Web,†Infomedia, vol. 4, no. 1, pp. 33–41, 2019.

I. Artikel, “PENGEMBANGAN SISTEM INFORMASI REPOSITORY SKRIPSI BERBASIS WEB MENGGUNAKAN METODE RAPID APPLICATION DEVELOPMENT ( Studi Kasus : Universitas Perjuangan Tasikmalaya ),†vol. 20, no. 2, pp. 12–18, 2020.

M. N. Furqon, A. Faisol, and F. S. Wahyuni, “Perbandingan Metode Naïve Bayes Dan Network Bayesian Untuk Diagnosis Penyakit Skizofrenia Berbasis Web,†JATI (Jurnal Mhs. Tek. Inform., vol. 4, no. 1, pp. 69–73, 2020, doi: 10.36040/jati.v4i1.2409.

Refbacks

  • There are currently no refbacks.