Sistem Pendukung Keputusan Pemilihan Guru Berprestasi Dengan Metode Simple Additive Weighting di SMKN 5 Kota Tangerang

Ahmad Fauzi, Syahrial Amirullah, Rio Supriyanto

Abstract

Schools are facilities created by the government to develop the potential that exists in humans through learning activities. To get a good school quality requires a teaching team that has good competence as well. To provide a motivation so that the teaching team is enthusiastic in providing teaching to students, the school will give a reward to teachers who excel. But in giving these rewards the school still uses the manual method so that in the selection of outstanding teachers it still takes a long time. Therefore, this research will try to provide an alternative for the school in deciding the teachers who excel in accordance with the criteria and methods used. In this study using the Simple Additive Weighting (SAW) method. In decision making, the Simple Additive Weighting (SAW) method is used in the selection of teachers who excel so that it will help the school in determining the teachers who excel. The results of the study were tested with TAM and got a score of 229 criteria. The results of the calculation will get a figure of 83.273%. The usability level of the application for selecting high-achieving teachers can be obtained a value of 83.27 %

Keywords

SAW; Kinerja guru; Pendukung keputusan;

Full Text:

PDF

References

Prastya, I. (2019). Pengertian Kinerja. Retrieved

November 11, 2019, from

https://www.ayoksinau.com/pengertian-kinerja/

Sinaga, R., Hasugian, P., Informatika, T., Criteria, W.,

Value, H., Belakang, L., … Indonesia, U. P. (2019).

SPK Penerimaan Guru di SMK Swasta Musda

Perbaungan dengan Metode SAW. Jurnal Teknik

Informatika Komputer, 2, 33–37. Retrieved from

http://jurnal.unprimdn.ac.id/index.php/JUTIKOMP/ar

ticle/view/673/495

Suryadijaya, D. (2018). Spk Saw Penentuan Pagelaran

Teater Terbaik. Jurnal Teknologi Informasi, 1(2), 237.

https://doi.org/10.36294/jurti.v1i2.301

Kusumantara, P. M., Alfian, M. I., & Yodistina, Y.

(2019). Analisis Metode Ahp Dan Saw Pada

Pendukung Keputusan Seleksi Ketua Departemen

Himpunan Mahasiswa. Jurnal Sistem Informasi Dan

Bisnis Cerdas, 12(1), 16–22.

https://doi.org/10.33005/sibc.v12i1.1584

Kholdani, A. F. R., Puspitasari, D. I., & Wahyu

Qur’ana, T. (2019). Rancang Bangun Sistem

Pendukung Keputusan Pemilihan Perumahan Dengan

Metode Ahp Dan Gis. Technologia: Jurnal Ilmiah,

(2), 96. https://doi.org/10.31602/tji.v10i2.1813

Nurmawan, H., Andriani, Y. F., & Kusrini. (2019).

Sistem pendukung keputusan karyawan berprestasi

pada pt. abc dengan metode saw. Jurnal INFORMA

Politeknik Indonusa Surakarta, 5. Retrieved from

http://www.poltekindonusa.ac.id/SUBDOMAIN/informa/index.php/informa/article/view/66

/66

Irawati, D., & Hasugian, H. (2019). Sistem Penunjang

Keputusan Pemilihan Pegawai Terbaik Menggunakan

Metode Analytical Hierarchy Process (Ahp) Dan

Simple Additive Weighting (Saw) Pada Kampung

Main Cipulir. Jurnal IDEALIS, 2(1), 336–343.

Retrieved from

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/arti

cle/view/1419/716

Penta, M. F., Siahaan, F. B., & Sukamana, S. H.

(2019). Sistem Pendukung Keputusan Pemilihan

Karyawan Terbaik Menggunakan Metode SAW pada

PT. Kujang Sakti Anugrah. JSAI (Journal Scientific

and Applied Informatics), 2(3), 185–192.

https://doi.org/10.36085/jsai.v2i3.410

Wanto, A., & Damanik, H. (2015). Analisis Penerapan

Sistem Pendukung Keputusan Terhadap Seleksi

Penerima Beasiswa BBM (Bantuan Belajar

Mahasiswa) Pada Perguruan Tinggi Menggunakan

Metode Simple Additive Weighting (SAW).

Chromatographia. https://doi.org/10.1007/bf02491573

Lutfi, D. S. (2019). Sistem Pendukung Keputusan

Penerimaan Dosen Baru Dengan Metode Simple

Additive Weighting (Saw). Jurnal Teknologi

Informasi Dan Terapan, 4(1), 11–16.

https://doi.org/10.25047/jtit.v4i1.15

Hasanah, H. (2017). TEKNIK-TEKNIK

OBSERVASI (Sebuah Alternatif Metode

Pengumpulan Data Kualitatif Ilmu-ilmu Sosial). AtTaqaddum, 8(1), 21.

https://doi.org/10.21580/at.v8i1.1163

Refbacks

  • There are currently no refbacks.