Sistem Rekomendasi Penjualan Menu Makanan di UMKM Kuliner Menggunakan Association Rule

Ade Kania Ningsih, Wina Witanti

Abstract

Micro, Small and Medium Enterprises (MSMEs) are one of the driving motors of the economy in the country, even MSMEs are the backbone of the Economy in Indonesia. MSMEs in Indonesia account for about 60% of GDP (Gross Domestic Product) and also provide employment opportunities to the community. However, with the emergence of THE COVID-19 outbreak of MSMEs in West Java there has been a decrease of up to 80%. This is a problem that exists, MSMEs customers are segmented based on the region due to large-scale social restrictions. This research conducted a review of product sales recommendation system in on-line shop using association rule mining in the culinary industry sector. The research begins with data selection, pre-process data, and data transformation, then the data that has been cleaned will be tested with A priori algorithm. The rules will evaluate using support, confidence, and an upgrade value to determine whether it's the best rule or not. The results of this study are software that will calculate the formation of association rules between culinary products. After an experiment with data amounting to 100 data, an association rule was obtained in the form of a certain pattern of customer behavior, by using Association Rules Technique and Apriori Algorithm, 12 rules are generated with a support threshold of 5% and a confidence threshold of 80%.
  

, Usaha Kecil dan Menengah (UMKM) merupakan salah satu motor penggerak perekonomian dalam negeri, bahkan UMKM merupakan tulang punggung Perekonomian di Indonesia. UMKM di Indonesia menyumbang sekitar 60% dari PDB (Produk Domestik Bruto) dan juga memberikan kesempatan kerja kepada masyarakat. Namun dengan munculnya Wabah COVID-19 pada UMKM di Jawa Barat terjadi penurunan hingga 80%. Hal ini menjadi permasalahan yang ada, nasabah UMKM tersegmentasi berdasarkan wilayah karena adanya pembatasan sosial berskala besar. Penelitian ini melakukan review terhadap sistem rekomendasi penjualan produk di toko on-line dengan menggunakan Association rule mining pada sektor industri kuliner. Penelitian diawali dengan pemilihan data, data praproses, dan transformasi data, kemudian data yang telah dibersihkan akan diuji dengan algoritma apriori. Aturan akan mengevaluasi menggunakan dukungan, keyakinan, dan nilai peningkatan untuk menentukan apakah itu aturan terbaik atau bukan. Hasil dari penelitian ini berupa software yang akan menghitung pembentukan aturan asosiasi antar produk kuliner. Setelah dilakukan percobaan dengan data sebanyak 100 data, diperoleh aturan asosiasi berupa pola perilaku konsumen tertentu, dengan menggunakan Association Rules Technique dan Apriori Algorithm dihasilkan 12 aturan dengan support threshold 5% dan confidence threshold. dari 80%.

 

Keywords

UMKM;apriori;association rules

Full Text:

PDF INDONESIA

Refbacks

  • There are currently no refbacks.