Klasifikasi Status Calon Pendonor Darah Menggunakan Algoritma Support Vector Machine dan Kernel RBF

Usep Tatang Suryadi, Nindi Azis Andriyani


To donate blood, generally must qualify the requirements, including physically and mentally healthy, aged 17-65 years, minimum body weight of 45kg, Hb levels 12.5g% - 17.0g%, upper tension (systole) 100-170mmHg, under tension (diastole) 70-100mmHg, 36.6-37.5 degrees Celsius body temperature, never had hemophilia, pulse range 50-100 times/minute, and the timescales > 3 months after a previous blood donors. The problem that arises is the small number of officers who often have difficulty recording donor data on the form sheets. Thus allowing unwanted error occurred when registering the identity or the results of the initial examination of prospective donors. Based on these problems, the classification of potential donors is needed as a step to determine the status of potential donors, whether the prospective donors are accepted as donors or rejected based on predetermined requirements. According to this research that using primary data which obtained from The Indonesian Red Cross Subang Regency, the data are using a plenty 50 of the data has accepting and 50 of the data has rejected. Afterwards required to doing continued analysis toward a method capability based on age, Hb level, body weight, sistolik dan diastolik, that using SVM (Support Vector Machine) algorithm.and using Sequential method for training phase in SVM and Kernel RBF for calculating the dot product value. The algotirhm accuration reached 90% / excellent categories with the value gamma = 0.5, C = 1, epsilon = 0.001.


Donor Darah Support Vector Machine Metode Sequential, Kernel Rbf

Full Text:



P. M. Indonesia, "Tentang Donor," 2016. [Online]. Available: https://ayodonor.pmi.or.id/about.php. [Accessed 7 Maret 2019].

S. R. Gunn, Support Vector Machines for Classification and Regretion, Southampton: University of Southampton, 1998.

I. H. Witten, E. Frank and M. A. Hall, DATA MINING Practical Machine Learning Tools and Techniques 3rd Edition, Burlington, USA.: Morgan Kaufman, 2011.

S. N. Fais A, M. A. D, S. M. I, D. Ramadien and A. Sani, "Klasifikasi Calon Pendonor Darah Dengan Metode Naive Bayes Clasifier," Malang, 2012.

D. Bayususetyo, R. Santoso and T. , "Klasifikasi Calon Pendonor Darah Menggunakan Metode Naive Bayes Classifier (Studi Kasus : Calon Pendonor Darah Di Kota Semarang)," Jurnal GAUSSIAN, vol. 6, pp. 193-200, 2017.

N. K. D. A. Jayanti, K. D. P. Novianti and I. W. Sumalya, "Implementasi Metode Support Vector Machine Pada Sistem Pengenalan Jejaitan," Seminar Nasional Teknologi Informasi Dan Multimedia, pp. 163-168, 4 Februari 2017.

R. Munawarah, O. Soesanto and M. R. Faisal, "Penerapan Metode Support Vector Machine Pada Diagnosa Hepatitis," Kumpulan Jurnal Ilmu Komputer, vol. 04, pp. 103-113, Februari 2016.

R. R. Fiska, "Penerapan Teknik Data Mining dengan Metode Support Vector Machine (SVM) untuk Memprediksi Siswa Yang Berpeluang Drop Out (Studi Kasus di SMKN 1 Sutera)," Jaringan Sistem Informasi Robotik, vol. 1, pp. 42-51, Maret 2017.

E. B. Nugroho, M. T. Furqon and N. Hidayat, "Klasifikasi Pendonor Darah Menggunakan Metode Support Vector Machine (SVM) pada Dataset RFMTC," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, pp. 2835-2840, September 2018.

S. Wu and S. Vijayakumar, "Sequential Support Vector Classifiers and Regression," The Institute for Physical and Chemical Research, pp. 1-10, 1999.


  • There are currently no refbacks.